
Journal of Computational Physics151,990–996 (1999)

Article ID jcph.1999.6190, available online at http://www.idealibrary.com on

NOTE

An Approximate Riemann Solver for
Second-Moment Closures

G. Brun,∗ J.-M. Hérard,† D. Jeandel,‡ and M. Uhlmann‡
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1. THE BASIC SYSTEM OF NON-CONSERVATIVE EQUATIONS

The hyperbolic convective subset of a second-moment turbulence closure for the Favre-
averaged compressible Navier–Stokes equations can be written as [1]

(ρ),t + (ρU j ), j = 0

(ρUi ),t + (ρUi U j + δi j p+ ρRi j ), j = 0

(ρE),t + (ρEUj +Ui (pδi j + ρRi j )), j = 0

(ρRi j ),t + (ρRi j Uk),k = −ρRikU j,k − ρRjkUi,k,

(1)

whereρ stands for the mean density,U is the density weighted mean velocity vector,R the
Reynolds stress tensor with componentsRi j = ũ′′i u′′j , E the mean specific total energy, and
p the mean pressure which can be expressed via the ideal gas law (withγ being the ratio
of specific heats), viz.,

p = (γ − 1)

(
ρE − 1

2
ρUkUk − 1

2
ρRkk

)
. (2)

For simplicity we will restrict the following presentation to flows with statistically two
space dimensions, i.e., a variable vectorW= (ρ, ρU, ρV, ρE, ρR11, ρR22, ρR33, ρR12)

t ,
such that we can write the system in matrix-vector notation

W,t + (Fi (W)),i = H(W,∇W), i = 1, 2, (3)
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and furthermore define the following projections with respect to coordinates(n, τ , s),

Un = Utn, Rnn = ntRn, Rnτ = ntRτ

Uτ = Utτ , Rττ = τ tRτ , Rss = R33,
(4)

wheren= (nx, ny, 0), τ = (−ny, nx, 0), ands= (0, 0, 1).
Equations (1) cannot be cast into conservation form due to the presence of turbulence

production. The characteristics wave system has the following eigenvalues with respect to
an arbitrary directionn:

λ1 = Un − c1, λ2 = Un − c2, λ3−6 = Un, λ7 = Un + c2,

λ8 = Un + c1, c1 =
√
γ p/ρ + 3Rnn, c2 =

√
Rnn.

(5)

An approximate analytical solution to the Riemann problem of the above system has been
obtained in [2] resorting to a linear path across genuinely non-linear waves. With these
ingredients it is possible to construct a full Godunov scheme as has been successfully done
in the related case of ak-ε type closure [3]. In this note, we will alternatively present an
approximate numerical Riemann solver. The basic flux-difference-splitting technique will
be recalled first before moving on to the case of a non-conservative system.

2. ROE’S SCHEME FOR SYSTEMS OF CONSERVATION LAWS

Let us consider a hyperbolic system of one-dimensional conservation laws in two-
dimensional space (without summation over subscriptn),

W,t + Acons
n (W, n) ·W,n = 0, Acons

i = ∂Fi

∂W
, (6)

where we define

An(W, n) = nx ·A1(W)+ ny ·A2(W), Fn(W, n) = nx ·F1(W)+ ny ·F2(W). (7)

An approximate Riemann solver provides the exact solution to the linearized problem

W,t +A(WL ,WR, n) ·W,n = 0, (8)

which consists of five simple waves since all fields are linearly degenerate (note that the
subscripts ( )L and ( )R indicate states to the left and right, respectively, of the the initial
discontinuity traveling along the directionn). The corresponding numerical flux function
is thus expressed by the well-known formula

FRoe= 1

2
(Fn(WL , n)+ Fn(WR, n))− 1

2
|A(WL ,WR, n)| · (WR−WL). (9)

The problem of finding a sensible linearizationA(WL ,WR, n) has been translated into
three conditions of consistency by Roe [4]:
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(i) A(WL ,WR, n) is hyperbolic and a diagonal form exists,
(ii) A(W,W, n)=Acons

n (W, n),
(iii) A(WL ,WR, n)[W]= [Fn(W, n)] (defining the jump [φ]=φR−φL ).

In the case of the Euler equations of gas dynamics, it turns out that the linearized system
matrix is equal to the original system matrix under a transformation of variables that has
been termed Roe’s average:

AEuler = AEuler(WRoe(WL ,WR), n). (10)

In the past, some authors have forced the hyperbolic part of the second-moment closure
equations to take a conservative form by eliminating from Eq. (1) the production term and
the action of the Reynolds stress in the conservative flux of momentum and total energy
[5, 1]. In the resulting truncated system turbulence is only felt via the pressure that is defined
by Eq. (2). This simplified approach enables us to simply use Roe’s flux formulation (9) in
conjunction with Roe’s average for all variables (cf. [1] for details). We will demonstrate
below that this approach can give rise to unphysical solutions.

3. ROE-TYPE SCHEME FOR NON-CONSERVATIVE SYSTEMS

We return to our non-conservative system of transport equations

W,t + An(W, n) ·W,n = 0,

whereA i = ∂Fi

∂W
+ Cnc

i (W), Cnc
i (W) ·W,i = −H(W,∇W).

(11)

As seen below, we discretize the source termCnc
n (W, n)W,n in a simple, centered man-

ner. As a consequence, applying Roe’s flux-difference-splitting gives formally the same
numerical flux formula as in the above case of conservation law [1]:

FRNC= 1

2
(Fn(WL , n)+ Fn(WR, n))− 1

2
|A(WL ,WR, n)| · (WR−WL). (12)

Similarly, we require the linearizationA to fulfill the following two fundamental constraints:

(i) A(WL ,WR, n) is hyperbolic and a diagonal form exists,
(ii) A(W,W, n)=An(W, n).

In a straightforward extension of Roe’s above idea (iii), i.e., that the numerical flux be exact
in the case of a shock wave being located between two nodes, one would write as the third
condition

(iii) a A(WL ,WR, n)[W]= [Fn(W, n)]+Cnc
n (WL ,WR, n)[W].

The jump conditions of the non-conservative source termCnc
n (WL ,WR, n)[W] are the

approximate ones based on the assumption of a linear path in terms of the variableZ=
(1/ρ,U,V, p, ρRnn, ρRττ , ρRss, ρRnτ )

t . The proposition of a linear path is due to Le
Floch [6] and has been put forth in the context of a generalized Rankine–Hugoniot condition
for non-conservative hyperbolic systems (cf. also [7]). Our particular choice of the variable
Z has been inspired by previous work onk-ε type closures (cf. [8, 9, 3]). It leads to the
desirable feature that the jump conditions (a) reduce to the exact Rankine–Hugoniot relations
in the limit of zero turbulence, and that (b) are equivalent to the Riemann invariants in the
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case of linearly degenerate fields (cf. [1, 10, 2]). However, we would like to emphasize that
the condition (iii)a is strictly valid only in the limit of zero shock strength and cannot be
regarded as a rigorous consistency condition as in the case of conservative systems.

In the case ofk-ε type closures [11, 12] and in the context of two-phase flows [13],
conditions (i), (ii), and (iii)a again lead to a linearized matrix resembling the original system
matrix

A(WL ,WR, n) = An(W̃(WL ,WR), n), (13)

whereW̃ is a particular average that differs from Roe’s averaging.
In the present case, however, the linearized matrixA obtained from the above relations

(i), (ii), and (iii)a cannot be recast into the form of the system matrixAn(Ŵ(WL ,WR), n)
since a corresponding averageŴ does not exist [1]:

∃/ Ŵ(WL ,WR)/An(Ŵ, n)[W] = [Fn(W, n)] + Cnc
n (WL ,WR, n)[W]. (14)

The matrixA that issues from condition (iii)a is thus in a form not suitable for numerical pur-
poses, in particular its diagonalization could not be obtained. Alternatively, an approximate
Godunov scheme can be constructed [10, 2] which does not rely on Roe’s condition (iii).
In the same spirit, we have relaxed this condition and replaced it by the following simple
expression based on an arithmetic average:

(iii) b A(WL ,WR, n)=An(W(Ȳ), n) (definingȲ= (YL +YR)/2),

whereY= (ρ,Un,Uτ , Ht , Rnn, Rττ , Rss, Rnτ )
t in local coordinates (n, τ perpendicular

and tangential respectively to the discontinuity) and total enthaply being defined asHt =
E+ p/ρ. Our numerical flux function can finally be written as (RNC designatingRoe
non-conservative)

FRNC= 1

2
(Fn(WL , n)+ Fn(WR, n))− 1

2
|A(W(Ȳ), n)| · (WR−WL). (15)

The “absolute value” of the system matrix is calculated through the relation

|A(W(Ȳ), n)| = R(W(Ȳ), n) · |3(W(Ȳ), n)| ·R−1(W(Ȳ), n), (16)

where3 is the diagonal eigenvalue matrix andR andR−1 the diagonalization matrices
containing the right and left eigenvectors, respectively.

4. INTEGRATION METHOD

Since in most finite volume methods multidimensional flows are treated as a succession
of quasi one-dimensional problems for each cell face, it suffices in the following to present
a one-dimensional discretization.

Integrating Eq. (11) over a finite volumeÄi (VÄi being the cell volume,0i designating
the cell surface,1t the time step, superscriptn indexing time steps,n being the outward
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normal vector) we obtain

VÄi ·
(
Wn+1

i −Wn
i

)+1t


∮
0i

FRNC
(
Wn

L ,W
n
R, n
)

d0i + Si (Wn)

 = 0. (17)

The source termsSi are expressed by a centered difference, so that

Si =
∫
Äi

Cnc(W) ·W,n dÄ = Cnc(Wn
i ) ·
∫
Äi

W,ndÄ = Cnc(Wn
i ) ·
∮
0i

W0(Wn) d0i , (18)

where

WLR(Wn) = Wn
L +Wn

R

2
(19)

at the respective cell faceLR.

5. QUASI ONE-DIMENSIONAL RIEMANN PROBLEMS

The first case is a Sod [14] shock tube with high turbulence Mach numbers(YL = (1, 0, 0,
4.5 · 105, 2

3105, 2
3105, 2

3105, 1
4105),YR= ( 1

8, 0, 0, 2.88 · 105, 16
3 103, 16

3 103, 16
3 103, 2 · 103).

The results (Figs. 1 and 2) demonstrate the monotonic behaviour of the method as well
as its capability of respecting analytically obtained Riemann invariants (p+ ρRnn being
invariant with respect to the three contact discontinuities associated withλ2, λ3−6, λ7).

The second case of a symmetrical double shock(YL = (1, 100, 0, 3.7 · 105, 2
3104, 2

3104,
2
3104, 1

4104),YR= (1,−100, 0, 3.7 · 105, 2
3104, 2

3104, 2
3104, 1

4104) underlines the fact that

FIG. 1. Turbulent shock tube; distribution of densityρ obtained with the present scheme (RNC).
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FIG. 2. Turbulent shock tube; distribution of pressurep and total normal stressp+ ρRnn obtained with the
scheme RNC, the latter quantity being invariant with respect to the contact discontinuity in the center 3-4-5-6-
wave).

essentially Euler-based methods—decoupling the turbulent wave system from the aerother-
modynamic one—can lead to spectacular oscillations (Fig. 4). The proposed RNC method,
on the other hand, captures adequately the wave propagation, even of very sensitive quan-
tities like the Riemann invariants of the 2- and 7-wave,Ut ± Rnτ /

√
Rnn (Fig. 3).

Detailed information on the analytical solution of the Riemann problem as well as
all specific ingredients of the numerical method can be obtained from the authors upon
request.

FIG. 3. Symmetrical double shock; distribution of invariantsUt ± Rnτ /
√

Rnn obtained with the present
scheme (RNC).
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FIG. 4. Symmetrical double shock; distribution of invariantsUt ± Rnτ /
√

Rnn obtained with the “decoupled
approach.”
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